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S m a r t  V e h i c l e  S p a c e S

perpetual Sensing for 
the Built environment

P ervasive sensing and computing tech-
nology will play a key role in future 
buildings. In the US, for example, 
federal sustainability goals mandate 
that 50 percent of commercial build-

ings must become net-zero energy by 2050. To 
realize this goal, existing buildings will require 

a wide range of retrofits and 
improvements. However, to 
benchmark buildings and ver-
ify the intended effects of the 
improvements, many critical 
building parameters, includ-
ing electricity, gas, and water 
usage, must be sensed and ana-
lyzed both before and after the 
improvements are made.1

Furthermore, many of the improvements 
themselves—such as advanced daylight harvest-
ing, where indoor lighting is adjusted in a fine-
grained manner in response to outdoor solar 
irradiance and the degree of shading—require 
their own sensors that can monitor occupancy, 
light level, glare, and shade setting. However, 
most sensors installed on walls, work surfaces, 
ceilings, shades, and many other places can’t 
be plugged into mains power, and users won’t 
tolerate frequent battery replacement. This sug-
gests that a different and more scalable sens-
ing paradigm is required. Motivated by these 

emerging applications and our own difficulties 
in fielding long-lived indoor sensors at modest 
scale, we decided to explore the factors prevent-
ing broader adoption of pervasive sensing and 
computing within buildings.

Scaling challenges
Contrary to conventional wisdom, we found 
that low-power mesh networking wasn’t as 
critical in many indoor settings as once be-
lieved. With wall-to-wall Wi-Fi and copious 
Ethernet ports available in many places, it’s 
now possible to place inexpensive, mains-pow-
ered gateways within one hop of most sensors. 
Furthermore, if neither of those options is via-
ble, then cellular connectivity is an increasingly 
viable gateway connectivity option.

An equal or even greater challenge in com-
mercial spaces occupied by people centers on 
aesthetics and cost. To be viable, sensors must 
be small and sleek, and their total cost of own-
ership can’t be very high. Today, unfortunately, 
most sensors aren’t designed with these factors 
in mind. Take, for example, plug-load power 
meters. Most are large, unattractive devices 
that many are unwilling to deploy pervasively. 
The key to scaling down their size is often tied 
to reducing their power draw, because the size 
of the energy storage component often domi-
nates the volume. With mobile and wearable 
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market forces driving down sensor 
cost and power, continued scaling in 
size is now possible.

As sensor size and cost continue to 
decline, installation and maintenance 
costs begin to dominate the total cost 
of ownership. The main cost driver is 
often provisioning for power, whether 
at installation time or on an ongoing 
basis. Consider circuit-level meters in-
side of electrical panel boxes. Typically, 
dozens of current measurement trans-
ducers (called current transformers) 
are placed near circuit breakers, and 
their leads are routed to electronics lo-
cated elsewhere. The electronics have a 
large footprint and high power draw in 
part because they are centralized. Un-
fortunately, accommodating the elec-
tronics and their power supply usually 
requires upgrading or augmenting the 
panel box—a costly proposition. How-
ever, as sensor component size, cost, 
and power continue to fall, it becomes 
possible to integrate all the electronics 
into the transducer itself and perpetu-
ally power it from the minute levels of 
energy harvested from current flow, 
eliminating the bulk of installation and 
maintenance costs.

Small, inexpensive, and perpetually 
powered sensors offer an attractive 
paradigm for pervasive sensing and 
computing.2 However, simply replac-
ing conventional power supplies—such 
as batteries or mains power—with en-
ergy harvesting ones presents many 
challenges. Harvested energy—from 
sources as diverse as light, heat, elec-
tricity, magnetism, or vibration—is in-
termittent and variable. To mask this 
uncertainty and the system challenges 
that it presents, most energy harvest-
ing systems dramatically overprovision 
the energy harvesting transducer (solar 
cells, for example) and energy storage 
(capacitors, for example), once again 
driving up sensor size and cost, thus 
limiting adoption.

perpetual Sensing
Rather than attempting to mask the in-
herent intermittency and unpredictabil-

ity in harvested energy, our work has 
sought to embrace it. The key insight is 
that the transfer and use of energy usu-
ally emits energy, often in a different 
domain, and that this emitted energy 
can sometimes be enough to intermit-
tently power simple energy harvesting 
sensors whose activation rate is propor-
tional to the energy being transferred or 
used. Consequently, the sensors’ mere 
activation rate signals the underlying 
energy use. Motivated by the Portu-
guese word for water hammer, we call 
this the Monjolo approach and define 
it as follows:3

The transfer and use of energy 
usually emits energy, often in 
a different domain, and this 
emitted energy is often enough 
to intermittently power simple, 
energy harvesting sensors whose 
activation rate is proportional to 
the energy being transferred or 
used, enabling simple sensors.

When applying the Monjolo ap-
proach, the energy harvester becomes 
the sensor. This approach works well 
for many things we want to sense in 
buildings. For example, built-in light-
ing is difficult to directly meter, but it’s 
easy to harvest energy from the light it-
self, whose brightness is proportional 
to the power it draws. Of course, many 
things we want to sense do not exhibit 
this power-proportionality property; 
however, they might still provide some 
energy, like a door opening, which 
can trigger activity that causes energy 
harvested using some other domain to  
be used. In other cases, we can indi-
rectly detect activity—for example, in 
motion-activated lighting, harvesting 
light energy to operate a sensor lets us 
indirectly monitor occupancy.

Here, we explore these and several 
other perpetual sensors built using the 
Monjolo approach. We also explore ex-
tensions of these systems to address sce-
narios it does not support, and consider 
other sensors that were motivated by the 
shortcomings of the Monjolo approach 

but do not use it for accuracy reasons. 
(Note that in the latter two cases, the en-
ergy harvester is not the sensor.) Figure 1  
shows many modular components in 
our perpetual sensing ecosystem.

catch Some rays
Perhaps the simplest Monjolo sensor is 
the one that harvests indoor light en-
ergy, letting us correlate a lamp’s power 
draw with the light it casts. However, 
building a viable device from off-the-
shelf components—a device that’s 
small, sleek, and inexpensive—is more 
difficult than one might anticipate. 
Typical indoor irradiance levels fall 
in the 10–100 μW/cm2 range, and af-
ter photovoltaic conversion and power 
supply inefficiencies, perhaps only 10 to 
20 percent of that is available for use.

Consequently, one challenge with 
centimeter-scale indoor sensors is that 
the idle power of many components, 
such as processors and radios, can ex-
ceed the paltry levels of harvestable 
power. So, in many cases, the electron-
ics must be disconnected or power cy-
cled constantly. During each power cy-
cle, or activation, the device cold boots, 
initializes the hardware, wirelessly 
transmits a packet, ensures that a fixed 
energy quanta is consumed, and pow-
ers down. This reduces the idle power 
but introduces a new challenge—the 
energy cost of cold booting.

Because a Monjolo sensor cold boots 
during each activation, energy spent ini-
tializing the system reduces the rate of 
activations and thus the sensor’s tempo-
ral fidelity. Moreover, embedded boot-
loaders and operating systems seldom 
optimize startup time or energy. For ex-
ample, the default TinyOS distribution 
requires 237 ms and consumes 2.174 
mJ from power-on to packet transmis-
sion on the Epic Core,4 leading to tens of 
minutes between activations. To reduce 
startup time and energy, we use an in-
ternal oscillator that starts quickly but 
has poor frequency tolerance to initial-
ize hardware components, employ inter-
rupt or polling rather than conservative 
timeouts to minimize wait times, run 
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oscillators at the maximum frequency 
when initializing memory, collapse 
the radio stack, and parallelize radio 
startup and memory initialization. Col-
lectively, these optimizations result in 
startup figures of 3.4 ms and 149 μJ—a 
69-times improvement in time and a 
14-times improvement in energy. This 
means that even in poorly illuminated 
settings, sensors will report approxi-
mately once every minute or two, and 
more frequently in better lit settings or 
when placed closer to lighting, as would 
be the case when monitoring them.5

Thus far, we have assumed that when 
a Monjolo sensor transmits a packet, 
an always-on radio receiver is within 
reception range to receive the packet. 
This might often be the case, but there 
are times when it might be desirable or 
necessary to transmit data to a battery-
powered, duty-cycled radio. In such 
cases, transmitting a packet as soon 
as sufficient energy has been harvested 
will result in lost data.

To address this problem, we can de-
couple activation from radio transmis-
sion, note activation time and count, and 
transmit this data according to a partic-
ular schedule. To initially synchronize 
communications, we use a variant of 
Disco, an asynchronous neighbor dis-
covery protocol, in asymmetric mode.6 

In our design, Monjolo nodes are aug-
mented with an ultralow-power real-
time clock that triggers 5-ms duration 
transmissions every minute whenever 
sufficient energy is available. Battery-
powered nodes listen for 5 ms every 
245 ms, ensuring overlapping transmit 
and receive windows, with a worst-case 
latency of 50 minutes in the absence of 
communication failures. This requires a 
roughly 2.45 percent duty cycle for the 
battery-powered sensor—an acceptable 
figure in many cases. Once synchro-
nized, tracking each Monjolo’s subse-
quent transmissions requires just 0.06 
percent per node.

Once we decouple system activation 
from radio transmission—that is, where 
the activation rate alone doesn’t convey 
all information in the packet transmis-
sion interval—it becomes possible to 
convey additional sensor data. When a 
device activates, it can sample real sen-
sors, such as temperature and humid-
ity sensors, and include their data in its 
transmissions. This lets us naturally ex-
tend a Monjolo sensor for one domain to 
support additional sensing modalities.

However, when operating in this re-
gime, it is useful for system software to 
have finer-grained control over power 
supply operation. For example, soft-
ware might want to initiate an early 

shutdown to conserve energy rather 
than consume a fixed energy quantum 
during each activation cycle. This re-
quires a richer power supply control in-
terface than is typically found on sen-
sors, exposing keep-alive, shutdown, 
and trigger controls. Reexamining the 
power supply interface can enable other 
operating modes as well.

Once the power supply exposes a 
trigger input, an external event can 
power up a sensor. One example where 
this is useful is in detecting door-open 
events. In this application, a zero-
power, piezoelectric cantilever trig-
gers a photovoltaic harvester and ra-
dio whenever a door opens, resulting 
in a packet transmission. We designed 
a sensor, called Buzz, to explore this 
design point (see Figure 2). Our re-
sults show that Buzz detects most door 
events, but that it also has two predict-
able failure modes. One type of failure 
occurs when a room has been dark for 
a while. Any charge harvested before 
the darkness leaks away over time, 
rendering the device unable to activate 
during the next event. Another type of 
failure occurs when two or more door 
events occur in rapid succession. In 
that case, the harvester does not have 
enough time to recharge before the 
second and later events.

Figure 1. Modular components in the Monjolo ecosystem, including energy harvesting power supplies, processor/radio modules, and 
various sensors and triggers that are combined to create sensors for building monitoring systems for lighting, electricity, and shower use.
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Both Buzz failure modes occur be-
cause the sensors store just enough en-
ergy to activate and transmit a packet 
exactly once. This is an intentional 
design decision—capacitors that can 
store enough energy for activation are 
relatively large and costly and thus not 
overprovisioned. Increasing the stor-
age voltage on capacitors only hastens 
their self-discharge rate. Also, at cen-
timeter scales, rechargeable batteries 
have cycle-life limitations, while both 
rechargeable batteries and supercapaci-
tors have limits on their instantaneous 
supply current that are below the peak 
current required to transmit a radio 
message. In the future, more sophisticated 
power supplies could use a hierarchy of 
storage technologies with intelligent 
transfers between the elements to address 
Buzz’s failure modes.

Another design point, called Breeze, 
decouples power from sensing, both 
physically and logically (see Figure 3). 
Physically, a photovoltaic panel is placed 
near a ceiling light (see Figure 4), an air-
flow sensor is placed on an HVAC vent, 
and a short cable connects the two. Log-
ically, rather than encoding information 
about the harvester’s activation rate in 
the radio transmissions, the transmitted 
data is about the airflow. Unlike tradi-
tional sensors, the sample rate is pro-
portional to the brightness of nearby 
lighting. Although this might seem un-
usual, it is worth noting that occupancy 
and lighting are often correlated, and 
occupancy and demand ventilation are 
also correlated. So in most cases, Breeze 
will be able to operate when people are 
present. However, it may be desirable to 
augment Breeze with additional energy 
storage capacity to provide measure-
ments during dark times as well.

So, while light-activated Monjolo 
sensors are useful on their own, en-
abling them to connect with battery-
powered sensors is possible once they 
can keep time. Also, decoupling system 
activation from radio transmission al-
lows additional sensors to piggyback on 
the Monjolo design, while a rich power 
supply interface enables new modes of 
triggered operation.

current inductions
Electricity metering is a natural fit for 
Monjolo-style sensors for both circuit-
level and plug-load scenarios. The ba-
sic idea is that a time-varying current 
flow causes a time-varying magnetic 
field around a conductor, and then that 
magnetic field can be used to induce a 
voltage in a coil of wire wound around 
a ferromagnetic core surrounding the 
conductor. If the inducted voltage is 
rectified, filtered, and stored, it can pe-
riodically activate a sensor once enough 
charge has accumulated. Moreover, the 
sensor’s activation rate is proportional 
to the magnitude of the current flow in 
the original conductor, provided that 
a fixed energy quanta is consumed per 
activation (see Figure 5).

One benefit of Monjolo electricity 
meters is that they draw nearly zero 
power, but they do have some draw-
backs. We have implemented both 
circuit-level and plug-load meters fol-
lowing this approach and discovered 
that they work well for resistive loads 
but exhibit expected errors for reac-
tive (motors, for example) and switch-
ing (power supplies, for example) loads 
because Monjolo meters do not sample 
the voltage waveform.

Electricity meters in the Monjolo 
style exhibit a wide range of activation 
rates in response to monitored load  
currents. At high load currents, this 
power-activity proportionality leads to 
frequent transmissions and potential 
radio channel contention. To reduce 
possible contention, we rate-limit Mon-
jolo radio transmissions to no more 
than one packet per unit time.

Figure 2. The Buzz sensor. (a) Buzz 
monitors door events using a piezoelectric 
cantilever to provide a zero-power trigger 
when the door moves. If the harvester 
has accumulated enough charge, the 
sensor activates and wirelessly transmits 
a packet. (b) Buzz detects most door 
events, but some are missed when they 
occur in quick succession or in the dark.
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Figure 3. Breeze monitors airflow from 
a vent. (a) Breeze decouples power 
from sensing—the photovoltaic panel is 
placed near a ceiling light, and the flow 
sensor is placed on the vent. Whenever 
the system has accumulated enough 
energy, it boots to take a sample and 
transmit the data. (b) Breeze detects 
airflow, but the sample rate is related to 
the brightness of nearby lights.
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However, the challenge in rate lim-
iting lies in measuring the passage 
of time on a device that loses power 
between activations. We employ a 
“countdown timer” implemented using 
a simple resistor-capacitor (RC) decay 
circuit. Whenever a packet is transmit-
ted, the capacitor is charged. Thereaf-
ter, the capacitor is discharged through 
the resistor. On subsequent activations, 
the capacitor voltage is checked to see if 
it has fallen below a threshold. If it has, 
a packet is again transmitted and the 
capacitor is recharged. If the capacitor 
voltage has not fallen below the thresh-
old, a packet is not transmitted. This 
ensures that the packet transmission 
rate is limited, albeit using a “timer” 
with very poor tolerance and high tem-
perature sensitivity.

By rate-limiting radio transmissions, 
the interpacket interval no longer con-
veys the activation rate, because sys-
tem activation and packet transmis-
sion are decoupled. We address this 

new problem by incrementing a non-
volatile counter on each activation 
and including the counter value in the 
transmitted packet. The key to this 
scheme is a new nonvolatile memory 
technology called ferro-electric RAM 
(FRAM), which allows low-energy, in-
place atomic updates at wire speeds. 
We use either an external FRAM chip 
or a FRAM-equipped microcontroller. 
We avoid conventional EEPROM and 
Flash technologies because they are 
poorly suited to Monjolo style sensors 
due to their high in-place update costs. 
Logging style updates with EEPROM 
and Flash are also undesirable because 
they can’t ensure a predictable energy 
cost for log management operations.

Applying these new techniques, we can 
implement Monjolo electricity meters 
that work reasonably well for resistive 
loads in circuit-level and plug-load config-
urations. Also, although not appropriate  
for revenue-grade metering applications, 
Monjolo electricity meters offer approxi-
mate the breakdown of electricity use in 
homes and offices. This is often enough 
to identify the major and minor loads, 
along with their contributions to the total 
electricity usage, with much higher fidel-
ity than nonintrusive load monitoring.7 
With no need to provision power, they 
are also easy to deploy and use. Monjolo 
teaches us that embracing energy harvest-
ing greatly aids in improving utility, but if 
we desire greater accuracy, we must ex-
plore designs that depart from Monjolo’s 
operating approach.

Circuit-level metering. To accurately mea-
sure electrical power, both the voltage 
and current signals must be sampled, 
and those voltage and current samples 
must be multiplied, point by synchro-
nized point, to yield power—something 
that neither Monjolo sensors nor many 
other sensors do. The main difficulty lies 
in the fact that for circuit-level metering, 
the voltage and current signals are physi-
cally separated. This is one reason that 
circuit-level metering systems use cen-
tralized electronics and remote current 
and voltage signal acquisition, typically 

with a wired current transformer and 
long voltage leads. Other designs ac-
quire voltage in one location and current 
in another, compute the average of each 
signal, and multiply the average values.8 
While popular, this approach yields ap-
parent, but not real and reactive, power.

Our Gemini design starts with the 
Monjolo design but improves on it to 
accurately compute true power.9 Gem-
ini addresses the drawbacks of prior 
approaches by decoupling and distrib-
uting the voltage and current measure-
ment acquisitions, and recombining 
them using a low-bandwidth, time-
synchronized, wireless channel to offer 
noninvasive real, reactive, and apparent 
power metering. Battery maintenance is 
eliminated using an energy harvesting 
design that enables the meter to power  

Figure 4. To harvest energy from indoor 
lighting, this sensor uses an indoor 
photovoltaic cell. (a) The photovoltaic 
panel is small enough to fit unobtrusively 
in a light fixture. (b) As the light’s power 
draw increases, shown in blue, so does its 
brightness and the activation rate of the 
Monjolo sensor, shown in red.
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Figure 5. An electricity sensor based on 
the Monjolo approach. (a) A current 
transformer, normally used to measure 
an AC current flow in a wire, becomes a 
Monjolo current harvester. A split-core 
model allows circuit panel installation 
with no downtime. (b) If the measured 
load exceeds a minimum startup 
threshold, the sensor’s activation is 
proportional to load power.
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itself from the current transformer. Ac-
curacy is substantially improved over 
other noninvasive meters by virtualizing  
the voltage channel. This is accom-
plished by creating a synthesized volt-
age waveform with microsecond-level 
phase matching—effectively letting the 
meter calculate power as if it could di-
rectly measure voltage.

Collectively, these improvements re-
sult in a new meter design point that 
can measure resistive loads with 0.6 W 
average error and reactive and switch-
ing loads with 2.2 W average error—
matching commercial, mains-powered 
solutions. Gemini draws on two comple-
mentary research themes—virtual sen-
sors and energy harvesting power sup-
plies—bringing them together to yield a 
novel design point in the metering space 
that provides accurate readings every 
few seconds for loads exceeding 100 W.

Although Gemini offers clip-on in-
stallation, energy harvesting operation, 
and accurate power metering, it does 
have one major drawback: it requires 
a nearby, wirelessly accessible voltage 
monitor that can respond with instanta-
neous voltage parameters with millisec-
onds delay and microsecond phase syn-
chronization. This reliance on a wireless 
link affects reliability, so we began to ex-
plore how we could avoid such a fragile 
design while retaining the benefits of the 
Gemini approach. One promising idea 

we discovered in the literature was to 
sense voltage in a noncontact manner.10 
The basic idea is that the time-varying 
potential difference that exists between 
the “hot” and “neutral” lines in a circuit 
creates an electric field that can be mea-
sured, whose phase can be extracted, 
and whose magnitude can be estimated 
(after a calibration procedure). Earlier 
systems required costly postinstallation 
calibration, but we wondered just how 
important the calibration step—primar-
ily required to scale the voltage magni-
tude—actually was.

We monitored voltage for over a 
month and found that it stayed within 
a small band. Moreover, the voltage sig-
nal, unlike the current signal, is quite 
sinusoidal, which means that it can be 
synthesized with higher fidelity. The 
most significant contribution to error 
in the power estimation was due to the  
phase offset between voltage and current.  
If this phase offset could be estimated 
accurately, it would be unnecessary to 
sample and scale the voltage signal.  
Rather, we could just synthesize a 
phase-aligned sinusoid and rely on lin-
early scaling the resulting power values 
if the voltage, monitored elsewhere, 
changed from the nominal voltage 
(which happens infrequently).

To test this idea and address sev-
eral other drawbacks in Gemini, we 
designed Triumvi, a new circuit-level 

power meter (see Figure 6). Triumvi im-
proves on the Gemini design in several 
ways. First, it includes an integrated 
voltage sense channel, whereas Gemini 
relies on an external source for voltage 
parameters. Second, it multiplexes a 
single current transformer for both en-
ergy harvesting and current measure-
ment, whereas Gemini requires two 
separate current transformers. Third, 
it stores measurements locally using 
FRAM, whereas Gemini transmits its 
measurements immediately. Finally, 
Triumvi encrypts its data transmissions 
with AES-128, whereas Gemini trans-
mits the readings in the clear.

The result of this study is that in 
a form factor slightly larger than the 
split-core current transformers typi-
cally used to just measure current, 
Triumvi harvests enough energy to 
power itself, monitor current and volt-
age, calculate power, encrypt data, 
store data, and wirelessly transmit the 
results. Our prototype can sustain a 
sample rate of nearly 1 Hz when the 
load draws at least 400 W. Triumvi 
exhibits an average accuracy of 5.16 
percent over a load power draw range 
of 150 to 600 W. Moreover, Triumvi 
supports rapid installation, requiring 
just 30 seconds to instrument a circuit 
and stream readings, which enables 
fast and inexpensive energy audits.

Plug-load metering. Miscellaneous  
electrical loads (MELs or plug loads) 
represent the fastest growing segment 
of electrical loads in homes and of-
fices.11 Unfortunately, we have limited 
visibility into the nature and extent of 
these loads. Monitoring plug loads is 
also useful for many things beyond 
characterizing loads—home energy 
audits, verifying energy star ratings 
in the wild, and detecting malware-
infested medical devices are just a few 
other applications. Although it is pos-
sible to build Monjolo electricity me-
ters in plug-load meter form—indeed, 
we have built dozens and deployed 
them in labs and homes—many appli-
cations are constrained by aesthetic 

Figure 6. Triumvi is a circuit-level power meter that clips around the wire running 
to a circuit breaker inside an electrical panel box. (a) It is a noncontact, standalone 
meter that can be (b) quickly and easily installed in an electrical panel box without 
requiring any modifications to the panel.

(a) (b)
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and cost concerns that limit the vi-
ability of that approach to research 
settings. The two major aesthetic is-
sues are size and usability. Plug-load 
meters, such as Kill-a-Watt and Watts 
up?, are too large for pervasive de-
ployment and have too limited a user 
interface—an LCD screen or network 
data delivery—to be usable in home 
and office settings. So, we began to 
explore the scaling limits of plug-load 
energy meters to see how small we 
could make them.

Examining a variety of meter designs 
revealed that two main factors contrib-
uted to a meter’s size. First, a roughly 
cubic inch volume is needed for a re-
ceptacle with which a plug load’s plug 
could mate. Second, power supply 
capacitors account for a volume that 
is roughly proportional to a meter’s 
power draw. This gave us a concrete 
miniaturization goal—a cubic inch 
volume—that we could target. With 
some engineering effort, we were able 
to squeeze in all the key elements of a 
power meter—power supply, voltage 
acquisition, current acquisition, power 
calculation, and radio transmission—
into a cubic-inch device, called Pow-
erCube (see Figure 7). The receptacle 
and capacitors dominated the internal 
volume, as expected. Although this de-
sign achieved our volume target, it was 

difficult to assemble, so it went unused.
We had targeted a roughly cubic-

inch volume for PowerCube based 
on the size of a receptacle. But what 
if a receptacle was not necessary? The 
existence of SafePlug tags—a plug-
through PCB with a 1.0 inch × 0.4 
inch footprint, to which an RFID chip 
is attached—made us wonder if a plug-
through power meter was possible. 
There would be many challenges, for 
sure: making electrical contact with 
the plug prongs to obtain power, sens-
ing voltage, and measuring current 
without intercepting the prongs. It 
would also require dramatically min-
iaturizing a mains-voltage AC-to-DC 
power supply and squeezing all the 
electronics for power metering and 
radio communications into an area 
smaller than a square inch.

However, it was possible, leading to 
PowerBlade,12 the smallest, lowest cost, 
and lowest power AC plug-load meter 
that measures real, reactive and appar-
ent power, and reports this data, along 
with cumulative energy consump-
tion, over an industry-standard Blue-
tooth Low Energy radio (see Figure 8). 
Achieving the PowerBlade design point 
required us to revisit every aspect of 
conventional power meters. We needed

•	 a new method of acquiring voltage 
(spring-loaded, sideways-mounted 
prongs); 

•	 a noninvasive, planar method of cur-
rent measurement (measuring the 
voltage induced in a surface mount 
inductor);

•	 an efficient and accurate method of 
computing power from the voltage 
and current channels (implemented 
using a low-power microcontroller 
with FRAM to maintain cumulative 
energy across power cycles);

•	 a radio interface that leveraged 
nearby smartphones to display data 
and report it to the cloud (using Ed-
dyStone); and

•	 a traditional power supply reimag-
ined with vastly lower current draw, 
allowing extreme miniaturization 

but requiring operation reminiscent 
of energy harvesting.

PowerBlade occupies a 1.0 inch × 1.0 
inch footprint, offers a 1/16″ profile, 
draws less than 180 mW itself, and of-
fers 1.13 percent error on unity power 
factor loads in the 2 to 1,200 W range 
and a slightly worse error rate for non-
linear and reactive loads. The system 
must duty cycle its radio because its 
miniature power supply cannot sus-
tain continuous operation, but it does 
sample the voltage and current signals 
at 2.5 kHz. Because PowerBlade di-
rectly samples the AC voltage wave-
form, it can detect AC zero crossings 
and use these crossings as a synchroni-
zation signal to schedule communica-
tions—an area of future exploration. 
This new design point enables afford-
able large-scale studies of plug-load 
energy usage and is sleek enough for 
use by aesthetically-minded consum-
ers. And, importantly, it is easier to 
manufacture than PowerCube. Varia-
tions on the theme include smart outlet 
covers that meter energy.13

Feel the heat
Many appliances, including stoves, 
toasters, and radiators, emit heat in 

Figure 7. PowerCube, a cubic-inch plug-
through power meter. Although this 
design achieved our volume target, it 
was difficult to assemble due to the use 
of six interlocking circuit boards that 
formed a cube.

Figure 8. PowerBlade is essentially a 
two-dimensional and nearly invisible 
plug-through, plug-load power meter. It 
uses a microcontroller with nonvolatile 
ferro-electric RAM (FRAM) to maintain 
the cumulative energy total across 
power cycles. The measurements 
are reported over a Bluetooth Low 
Energy radio to a nearby gateway or 
smartphone for collection or processing.
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 proportion to the electricity or gas they 
consume, and faucets and shower heads 
emit heat in proportion to the temper-
ature and duration of their use. Could 
simple energy harvesting sensors that 
follow the Monjolo approach be used to 
monitor and infer the specifics of their 
operation? To find out, we designed a 
harvester for a thermoelectric generator 
and attached the sensor to various heat-
emitting loads around a house (see Fig-
ure 9).14 Our findings were illustrative.

Unlike harvesters that target light, 
electricity, or magnetism and respond 
quickly to a stimulus, harvesters that 
target temperature differentials re-
spond more slowly. Heat sinks are of-
ten required for effective operation, but 
their thermal mass can be both a bless-

ing and a curse. A large heat sink does 
not saturate quickly, preserving the cru-
cial temperature differential needed for 
thermoelectric generation, but it drives 
up system volume and surface area, 
and decreases responsiveness. A small 
heat sink is of course more responsive, 
but it can quickly saturate, reducing 
the magnitude of the temperature dif-
ferential available to generate power. 
In addition to these challenges, the en-
vironment can also become saturated. 
For example, a hot shower elevates both 
the shower nozzle temperature and the 
ambient air temperature, reducing the 
power output.

Fundamentally, thermal inertia and 
equilibrium make thermoelectric gen-
erators less effective at adhering to the 
Monjolo approach during both transi-
tional and steady-state operation. So 
do they have any value? It turns out 
that they do—as binary activity sen-
sors. Small sensors, perhaps in the 
form of peel-and-stick tags, could be 
affixed to appliances and faucets to sig-
nal usage. They could be used to esti-
mate the rough duration of a shower, 
for example. Their data might not 
offer high temporal fidelity, but such 
sensors could nonetheless give hints 
to disaggregation algorithms, helping 
deconstruct resource consumption in 
residential, commercial, or industrial 
settings.15,16 They could also provide 
insights into machine malfunction, like 

overheating. In such an application, a 
change in the distribution of activation 
intervals might signal when machinery 
is operating outside the norm.

emerging architecture
We have presented a wide array of en-
ergy harvesting sensors that extend the 
basic Monjolo design in various ways. 
All these sensors conform to a common 
architecture that has emerged through 
multiple generations of sensor devel-
opment and deployment. The archi-
tecture is simple, but it has allowed us 
to build many of the sensors we have 
discussed in a modular fashion—inno-
vating on only the unique aspects of the 
design space for each new system. 

Figure 10 shows the architecture 
shared by our energy harvesting sen-
sors. It contains four subsystems: energy 
harvesting power supply, trigger, sensor 
apparatus, and communications.17 Col-
lectively, this simple architecture cap-
tures the internal organization of the 
great majority of sensors discussed.

energy harvesting power Supply
Each sensor accrues energy at runtime 
with a suitable energy harvesting frontend. 
Power supplies must expose a trigger, 
latch, and shutdown mechanism. Typi-
cally, energy harvesting power sup-
plies supply power immediately after a 
voltage threshold is reached. For some 
applications, this might be useful, but 
other applications might only want to 
consume the limited energy reserves 
after a period of time has elapsed or an 
event has occurred.

To support this, the power supply must 
be able to store energy without activating 
the remainder of the sensor until a trig-
ger is asserted. Once asserted, the power 
supply latches and keeps the power rail 
activated until energy is exhausted or 
the device asserts the shutdown signal 
to disconnect power. The power sup-
ply should also be capable of disabling 
this feature and supplying the power rail 
immediately after energy is available. In 
addition, power supplies can include pro-
visions to increase the storage capacitor, 

Figure 9. A heat sensor based on the Monjolo approach. (a) A thermoelectric 
generator turns a temperature differential into current flow. The temperature 
difference between a hot surface and the surrounding cooler air can power a 
Monjolo sensor. (b) However, over time, as the air warms and heat sink saturates, the 
linear relationship between activation rate and temperature can be lost.
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supply excess energy to a backup capaci-
tor or battery, and dump excess charge to 
an auxiliary energy store or sink.

Trigger
The trigger is responsible for activating 
the computational, sensing, or commu-
nication resources on the device, de-
pending on application needs. The trig-
ger can fire as soon as sufficient energy 
is available or in response to an internal 
or external event, such as a real-time 
clock’s periodic alarm or a random door 
opening. In this way, triggers can be op-
portunistic, periodic, or event-based.

Sensor
The energy harvester is the sensor for 
a purely Monjolo-style device. Alter-
natively, an on-board sensor can be 
used to monitor ambient conditions. 
The sensor’s sample rate is constrained 
by the energy harvesting rate, and the 
range of usable sensors is governed by 
the energy storage capacity of the power 
supply. Low-power and low-energy sen-
sors that can obtain a reading quickly 
are best suited for this architecture. If 
the sensor involves accessing the energy 
harvesting transducer, such as Triumvi, 
then the architecture’s modularity 
could be compromised, and the sensor 
and power supply might need to be co-
designed for the particular application.

Communications
Data communications could occur over 
space via wireless transmissions or over 
time by logging to local storage. The 
latter option is well suited to islanded 
or isolated operation, but it requires a 
low-energy, nonvolatile storage facility 
such as FRAM. Maintaining protocol 
sequence numbers across power cycles 
is another reason for having access to 
lightweight storage. Some network pro-
tocols will drop packets with duplicate 
sequence numbers, so it is important to 
give a unique number to each transmit-
ted packet. Of course, this means that 
the sequence number must be inexpen-
sively saved and restored across power 
cycle-separated activations.

From Sensors to Systems
So far, our focus has been on the sen-
sors themselves, but for many of these 
sensors to be useful, they require as-
sistance from nearby gateways. For 
example, Monjolo sensors without a 
real-time clock need the gateway to 
keep track of the interactivation inter-
vals to estimate the activation rate. Or, 
the data from a network of Monjolo 
sensors might need to be processed to 
extract meaningful higher-level ana-
lytics. One example of such analytics 
is when various loads are instrumented 
in a home with Monjolo sensors, with 
the goal of submetering, as shown in 
Figure 11. We assume that each sen-
sor will exhibit an activation rate that 
is correlated with the power draw of 
the load to which it is affixed. These 
sensors report their activations to 
the data-processing system, called 
 Deltaflow, which can determine the 
actual power draw by incorporating 
ground-truth aggregate measurements 
such as those provided by a utility me-
ter or Triumvi sensors.18

Algorithms map sensor activations 
to energy use by observing when the 
aggregate measurement and the sensor 
activation frequency change simulta-
neously. The algorithm iteratively par-
titions the history into discrete states 
that are used to construct and solve in-
stances of a linear optimization prob-
lem. Solutions to the problem reveal 
the mapping from activation frequen-
cies to individual load power draw. 
This systems approach to submetering 
results in installations that are easy to 
deploy and maintain, while contrib-
uting negligible additional load, en-
abling building owners and occupants 
to simply affix tags to energy consum-
ers and automatically begin receiving 
real-time power-draw readings.

Ultimately, our goal is to 
replace the meso-scale 
Monjolo sensors with mi-
cro-scale, peel-and-stick 

sensors that incorporate the same func-
tionality. While the current generation  

Figure 11. Submetering with Monjolo and Deltaflow. Although power flows from the meter 
to the loads, information about the power draw is aggregated at the meter (solid lines), 
while information about individual loads is encoded in the intermittent radio transmissions 
(dashed lines). These two data streams are combined to estimate the individual power draws.
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of Monjolo sensors are adequate, we 
envision a future generation of sen-
sors that approach dimensions closer 
to “smart dust.” Figure 12 shows an 
example of such a sensor, which in-
tegrates a solar cell, processor, radio, 
and battery, providing much of the 
Monjolo sensor functionality needed 
by Deltaflow to perform submeter-
ing.19 This illustrates that the peel-
and-stick sensor tags we envision will 
soon be viable, and at those scales, the 
sensor could be integrated into lami-
nated tags and easily, inexpensively, 
and invisibly affixed to pervasively 
distributed loads to realize perpetual 
sensing.  
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